Definition Let F be a field. A non-empty set V is a vector space over the field F if the following axioms hold:

- (1) An operation called *addition* is defined on the set V: to any pair of $\mathbf{v}, \mathbf{w} \in V$ we assign a unique element in V denoted by $\mathbf{v} + \mathbf{w}$.
- (2) Addition is associative: any three elemetrs $\mathbf{v}, \mathbf{w}, \mathbf{z} \in V$ satisfy

$$(\mathbf{v} + \mathbf{w}) + \mathbf{z} = \mathbf{v} + (\mathbf{w} + \mathbf{z}).$$

(3) Addition is commutative: any two elements $\mathbf{v}, \mathbf{w} \in V$ satisfy

$$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}.$$

(4) There exists a *zero* element $\mathbf{0} \in V$: every $\mathbf{v} \in V$ satisfies

$$\mathbf{0} + \mathbf{v} = \mathbf{v} + \mathbf{0} = \mathbf{v}.$$

(5) Every element has a negative (additive inverse): to every $\mathbf{v} \in V$ there exists an element $-\mathbf{v} \in V$ satisfying

$$\mathbf{v} + (-\mathbf{v}) = (-\mathbf{v}) + \mathbf{v} = \mathbf{0}$$

- (6) An operation called *multiplication by scalars* is defined between the field F and the set V: to every $\lambda \in F$ and $\mathbf{v} \in V$ we assign a unique element in V denoted by $\lambda \mathbf{v}$.
- (7) All $\lambda, \mu \in F$ and $\mathbf{v} \in V$ satisfy

$$(\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}.$$

 $\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}.$

- (8) All $\lambda \in F$ and $\mathbf{v}, \mathbf{w} \in V$ satisfy
- (9) All $\lambda, \mu \in F$ and $\mathbf{v} \in V$ satisfy

$$(\lambda \mu)\mathbf{v} = \lambda(\mu \mathbf{v}).$$

(10) Every $\mathbf{v} \in V$ satisfies

 $1\mathbf{v} = \mathbf{v},$

where 1 is the multiplicative identity i the field F (i.e., $1\lambda = \lambda 1 = \lambda$ for every $\lambda \in F$).

Note: The elements of V are called vectors so the vector can mean polynomials, matrices, functions, 2-dimensional vectors, 3-dimensional vectors, etc. depending on the set V. The elements of the field F are called scalars. When we talk about a vector space V, we must always specify which field F where scalars come from. In other words, A vector space always comes as a pair: a nonempty set together with a field F. When $F = \mathbb{R}$, we call V a *real* vector space. When $F = \mathbb{C}$, we call V a *complex* vector space.

Examples of Vector Spaces

- (1) The plane or space vectors starting from the origin form a real vector space under the ordinary vector addition and multiplication of a vector by a real numbers.
- (2) F^k is a vector space over the field F if the operations are performed componentwise. The previous example is the special case $F = \mathbb{R}$ and k = 2 or k = 3. When $F = \mathbb{R}$ and k = 1, we have \mathbb{R} which is a vector space over itself.
- (3) The set of $k \times n$ matrices with entries in F is a vector space over F under the usual addition and multiplication by scalars of matrices. This set is denoted by $F^{k \times n}$ or $M_{k \times n}(F)$. The previous example is the special case n = 1.
- (4) For a fixed n, the set of polynomials with real coefficients of degree $\leq n$ is a real vector space under the usual operations.
- (5) Remember infinite sequences you came across in Calculus 2? The set of infinite sequences of real numbers forms a vector space over \mathbb{R} with the usual operations.
- (6) The set of functions from \mathbb{R} to \mathbb{R} forms a vector space under the usual operations $f + g : \alpha \mapsto f(\alpha) + g(\alpha)$ and $\lambda f : \alpha \mapsto \lambda f(\alpha)$.

Consequences of the Axioms

- (1) The zero element (vector) is unique.
- (2) The negative of a vector is unique.
- (3) We can perform subtraction, i.e., to every pair of vectors $\mathbf{v}, \mathbf{w} \in V$, there exists a unique vector $\mathbf{z} \in V$ satisfying $\mathbf{w} + \mathbf{z} = \mathbf{v}$, namely $\mathbf{z} = \mathbf{v} + (-\mathbf{w})$. We denote \mathbf{z} by $\mathbf{v} \mathbf{w}$.
- (4) When adding more than two vectors, we can omit the parentheses and order the vectors arbitrarily as addition is associative and commutative.

Theorem

- (1) $\lambda \mathbf{0} = \mathbf{0}$ for all $\lambda \in F$.
- (2) $0\mathbf{v} = \mathbf{0}$ for every $\mathbf{v} \in V$ where 0 is the zero element in the field F.
- (3) $(-1)\mathbf{v} = -\mathbf{v}$ for every $\mathbf{v} \in V$ where -1 is the negative of the multiplicative identity in the field F.
- (4) If $\lambda \mathbf{v} = \mathbf{0}$, then $\lambda = 0$ or $\mathbf{v} = \mathbf{0}$.

Note: We will always assume that the coefficients of polynomials and the terms of sequences are real numbers unless otherwise specified.

Question: Which of the following sets are real vector spaces?

- (1) The set of polynomials divisible by $x^3 + 1$.
- (2) The set of polynomials that leave a constant remainder when divided by $x^3 + 1$.
- (3) The set of polynomials whose sum of coefficients is 0.
- (4) The set of polynomials whose every coefficient is a rational number.
- (5) The set of polynomials which have a real root.
- (6) For a fixed n, the set of polynomials of degree n.
- (7) The set of bounded sequences.
- (8) The set of convergent sequences.
- (9) The set of non-decreasing sequences.
- (10) The set of monotone sequences
- (11) The set of geometric sequences (including the 0 sequence)
- (12) The set of continuous functions from \mathbb{R} to \mathbb{R} .
- (13) The set of even functions from \mathbb{R} to \mathbb{R} .
- (14) The set of functions from \mathbb{R} to \mathbb{R} such that $f(\pi)$ is an integer.